
  

OpenLayers Workshop

Thomas Wood
OpenLayers User & Contributor

SoC Summer School 09 Southampton
Tuesday, 8th September

Follow along with the demos at
http://sn.im/soc-ol-demos

http://sn.im/soc-ol-demos


  

What is OpenLayers?
● “an Open Source map viewing framework 

written in JavaScript”

- an alternative to commercial mapping APIs

- considered by some hard to use and too 
complex

– I am going to try and dispel some of that 
myth!

- designed to integrate well with existing GIS 
web servers as well as neogeograpy 'standards'



  

Who uses OpenLayers?

The Lord's Cricket ground website



  

Who uses OpenLayers?

OpenStreetMap and many of its child projects

www.öpnvkarte.de



  

Who uses OpenLayers?

AND's map2.0



  

Who uses OpenLayers?

CartoCiudad and the Cartovisor API

 Instituto Geográfico Nacional



  

Who uses OpenLayers?

Institut Géographique National - Géoportail API



  

Who uses OpenLayers?

OpenSpace API – Ordnance Survey



  

Who uses OpenLayers?

whitehouse.gov/change



  

Getting Started

The first step is to create a text file containing 
this code, this is the absolute essentials for any 
OpenLayers project

<html>
<head><title>OpenLayers Workshop 1</title>
<script src="http://openlayers.org/api/OpenLayers.js"></script>
<script>
function start() {
    var map = new OpenLayers.Map("map_box");
}
</script>
</head>
<body onload="start()">
    <h1>OpenLayers Workshop Example 1</h1>
    <div id="map_box"></div>
</body>
</html>



  

Getting Started

This part of the code deals with creating the 
page and the box in which the map will go

It can be styled using the standard HTML/CSS 
methods

<html>
<head><title>OpenLayers Workshop 1</title>
<script src="http://openlayers.org/api/OpenLayers.js"></script>
<script>
function start() {
    var map = new OpenLayers.Map("map_box");
}
</script>
</head>
<body onload="start()">
    <h1>OpenLayers Workshop Example 1</h1>
    <div id="map_box"></div>
</body>
</html>



  

Getting Started

This code loads OpenLayers then runs the start 
function when the page loads

The start function creates a new OpenLayers 
map in the map_box HTML container

<html>
<head><title>OpenLayers Workshop 1</title>
<script src="http://openlayers.org/api/OpenLayers.js"></script>
<script>
function start() {
    var map = new OpenLayers.Map("map_box");
}
</script>
</head>
<body onload="start()">
    <h1>OpenLayers Workshop Example 1</h1>
    <div id="map_box"></div>
</body>
</html>



  

OpenLayers.Map

So, what's this magical OpenLayers.Map thing?
● An object
● var map = new OpenLayers.Map(div_id, options)

● Contains several very useful functions:
● addLayer
● AddControl
● getCenter/setCenter



  

Adding (Raster) Layers

OpenLayers supports a wide range of types of raster 
layer providers:
● ArcGIS servers (both Server 9.3+'s REST interface and ArcIMS)
● Google Maps
● Plain image files (in a format that the browser understands – unfortunately not .tiff)
● KaMap
● MapGuide
● MapServer
● TileCache
● TMS
● VirtualEarth (now Bing)
● WMS
● WorldWind
● Yahoo
● XYZ tiles (as OpenStreetMap uses)



  

Adding a WMS Layer
function start() {
    var map = new OpenLayers.Map("map_box");
    var wms = new OpenLayers.Layer.WMS("OpenLayers VMAP0",
        "http://labs.metacarta.com/wms/vmap0", {layers: "basic"});
    map.addLayer(wms);
    var centre = new OpenLayers.LonLat(-3, 55);
    map.setCenter(centre, 5);
}

There are 4 new lines added here:

● A WMS Layer is created, the three parameters passed are:
● The name of the layer (this will be displayed to the user)
● The WMS server URL
● And any parameters to pass to the server

● The Layer is added to the map

● A LonLat coordinate is created

● The map's centre and zoom level is set to that coordinate
(EPSG:4326 is assumed by default)



  

More WMS
The previous example was very simplistic because OpenLayer's 
default projection (unprojected lat/lons) and scale 
configuration were used

For custom raster layers, the layer should be configured with its 
extents, resolutions or scales, and projection

The resolution configuration can be done in several ways, in this 
case, the min and max resolutions have been defined, OL will 
determine the resolution for each zoom level
var npe = new OpenLayers.Layer.WMS(
    "OS New Popular Edition (1940s)",
    "http://www.getmapping.com/iedirectimage/getmappingwms.aspx",
    {'format':'jpeg', 'layers':'npeoocmap'},
    {
        projection: new OpenLayers.Projection("EPSG:27700"),
        maxExtent: new OpenLayers.Bounds(0, 0, 800000, 1300000),
        maxResolution: 2500,
        minResolution: 1
    }
);



  

Introducing Projections
OpenLayers will work with any projection, provided that rasters of 
different projections are not mixed

With proj4js, OpenLayers can reproject vector data as required

var os = new OpenLayers.Projection("EPSG:27700");
var wgs = new OpenLayers.Projection("EPSG:4326");

var centre = new OpenLayers.LonLat(-1.4, 50.92);
centre.transform(wgs, os);

<script src="http://proj4js.org/lib/proj4js-compressed.js"></script>
<script src="http://spatialreference.org/ref/epsg/27700/proj4js/"></script>

Proj4js and the projection definition are loaded as scripts (in this case the OS 
national grid, EPSG:27700)

Projecting a coordinate is then quite simple, the projections are 
initialised and then used in a transform on the geometry



  

XYZ Tile Layers
Gridded tiles in the “Google” XYZ file naming scheme are an 
ever popular way of serving custom map renders
var osmrail = new OpenLayers.Layer.XYZ("OSM Rail Map",
    "http://dev.openstreetmap.org/~steve8/railway_tiles/${z}/${x}/${y}.png",
    {
        sphericalMercator: true,
        attribution: "Data CCBYSA OpenStreetMap, rendering by Steve Chilton"
    }
);

● The layer name

● The URL where the tile images will be found
● ${x} ${y} and ${z} are replaced by the appropriate tile reference

● The options 'hash', containing:
● A shortcut configuration option to tell OL to use the appropriate projection 

settings for Spherical Mercator type layers

● The layer's attribution  to be displayed with the layer



  

3rd Party Layers
OpenLayers supports the main commercial map APIs as 
layers
Import the API as usual:
<script src="http://maps.google.com/maps?file=api&amp;v=2&amp;key=API_KEY"></script>

The sphericalMercator option forces the Google layer to use its true projection, rather 
than faking lat/lon, this is essential if used with other (non-Google) layers

var google = new OpenLayers.Layer.Google("Google", {sphericalMercator: true});

Create the layer:

OpenLayers also has the OpenStreetMap tile layer as a built 
in layer
var osm = new OpenLayers.Layer.OSM("OpenStreetMap");

For all these layers, EPSG:900913 is the SRS code to use when projecting coordinates, 
OpenLayers has support for it built-in

http://maps.google.com/maps?file=api&amp;v=2&amp;key=API_KEY


  

A Bit of Control
Controls are OpenLayer's way of interacting with the user. There's over 30 controls 
available to use, but only 10 or so are regularly used:

● Navigation – makes the map draggable, provides the mouse and keyboard actions

● PanZoom – the default compact navigation controls

● Attribution – a label usually displayed at the bottom right of the map that gives any 
appropriate copyright credits

● LayerSwitcher – a pop-out control that allows the visible layers to be changed

● PanZoomBar – extended version of the PanZoom control, giving an indication of zoom 
levels available

● Permalink – creates a hyperlink to current map view

● ScaleLine - a small line indicator representing the current map scale

● NavigationHistory – allows the navigational history of the map to be replayed

● OverviewMap

● GetFeature/WMSGetFeatureInfo – interface to query the server for features under a 
click

● ... also more Controls for use with vector layers



  

Adding Controls
Controls are created in the standard way and added to the map, 
using the addControl() function
map.addControl(new OpenLayers.Control.LayerSwitcher());

var map = new OpenLayers.Map("map_box", {
  controls: [
    new OpenLayers.Control.Navigation(),
    new OpenLayers.Control.PanZoomBar(),
    new OpenLayers.Control.LayerSwitcher()
  ]
});

Controls can also be specified when the map is created, this prevents the 
default controls from being added automatically

In this case, the PanZoomBar control was required instead of the PanZoom 
control (a default), to prevent the PanZoom control being added by default, 
the controls were specified when the map is created



  

Controlling Controls

Most controls accept a standard set of options, the two 
most useful are:
● div – where the control will be placed
● displayProjection – the projection the control 

will display in (this can also be set on the map as a default for all 
controls)

<div>Mouse Position in WGS84: <span id="mouse_wgs"></span> in Spherical 
Mercator: <span id="mouse_sm"></span></div>

var map = new OpenLayers.Map("map_box", {displayProjection: wgs});
map.addControl(new OpenLayers.Control.MousePosition({
    div: $("mouse_wgs")
}));
map.addControl(new OpenLayers.Control.MousePosition({
    div: $("mouse_sm"),
    displayProjection: sm
}));



  

Vectors, Features and Geometries
● A Geometry is the description of a 

geographical object
● A Feature is a combination of a Geometry with 

attributes, styles and other metadata
● A Vector layer is a collection of Features to be 

rendered on the map

Vector layers can be produced by manually 
creating Geometries and Features, but it is 
usually easier to load a data file



  

Loading Vector Data

OpenLayers provides a number of ways to load vector data 
onto a map, however the 'behaviours' method has become 
the preferred method since version 2.8 was released

The 'behaviours' method relies on a 
Protocol/Format/Strategy model to request data:
● Protocol – how the data is to be retrieved (HTTP or WFS)
● Format – the file format the data is in
● Strategy – what subset of data should be displayed (eg: all 

data, by BBOX, in clusters, by page, or by a more specific 
filter)



  

Supported Vector Formats
● ArcXML
● GeoJSON
● GeoRSS
● GML
● GPX
● KML
● OSM
● Text (comma separated values)
● WKT



  

Loading Vector Data
Data for this demo will be geotagged photos from the flickr Trig 
Points group

Flickr provide a KML feed over the HTTP protocol with style 
information as part of their API, they limit the number of features 
served, so we can just use a Fixed strategy

var trigpoints = new OpenLayers.Layer.Vector("Flickr Trigpoint Photos", {
    protocol: new OpenLayers.Protocol.HTTP({
        url: "http://api.flickr.com/services/feeds/geo/?
g=90227313@N00&lang=en-us&format=kml&page=1",
        format: new OpenLayers.Format.KML({extractStyles: true})
    }),
    strategies: [new OpenLayers.Strategy.Fixed()],
    Projection: wgs
});
map.addLayer(trigpoints);

Note: Due to browser security policies, requests for data from a different domain from that 
the map is hosted on are rejected

A proxying script must be used to make the request, OpenLayers supports specifying a proxy 
to use, set OpenLayers.ProxyHost to point to the proxy before calling any data requests

OpenLayers.ProxyHost = "/proxy.php?url=";



  

Filtering by BBOX

For large datasets, it's not viable to serve all the data 
at once

If the data server supports filtering by bounding box, 
the BBOX strategy will request only what's on screen at 
the time, requesting more data as required

var bus = new OpenLayers.Layer.Vector("OSM Bus Stops", {
    protocol: new OpenLayers.Protocol.HTTP({
        url: "/featureserver/featureserver.cgi/bus/all.gml",
        format: new OpenLayers.Format.GML()
    }),
    strategies: [new OpenLayers.Strategy.BBOX()]
});



  

Clustering

Points close together will usually just overlap, creating 
a mess in places with a high density of points. 
Clustering prevents this, by simplifying points that are 
close together

Clustering features is as easy as adding the Cluster 
Strategy to the Layer's strategies list

var layer = new OpenLayers.Layer.Vector(...
    strategies: [
        new OpenLayers.Strategy.BBOX(),
        new OpenLayers.Strategy.Cluster()
    ],
...);

Clusters can then be styled to make it obvious that the 
point is representing more than one feature

Each feature can also be accessed programmatically



  

Style
The default orange blobs are boring

OpenLayers supports a range of styling properties 
for all features, a full list of them is available in 
the OL documentation

A Style is the way a feature is drawn at a particular 
time

A StyleMap is a collection of styles, one of which is 
used, depending on the feature's state

Styles can be dynamic – they can be set using a 
feature's attributes, functions can also be written 
to process an attribute into a style property



  

Style
var busStyle = new OpenLayers.Style({
    externalGraphic: "bus_stop.png",
    graphicWidth: 12,
    graphicHeight: 12,

    label: "${name}",
    fontSize: "10px",
    fontFamily: "Trebuchet MS, sans-serif",
    labelAlign: "lm"
});

var busStyleMap = new OpenLayers.StyleMap({
    'default': busStyle
});

var bus = new OpenLayers.Layer.Vector(...
    styleMap: busStyleMap
...);

The ${name} syntax tells OpenLayers to look for the 'name' 
property in the feature's attributes and in the Style's contexts



  

Style 'Contexts'

This time, rather than querying the attributes directly, two functions are 
created

● iconSize queries the number of features in the cluster and returns a 
size for the icon

● getName gets the name attribute from the first feature in the cluster, 
this is then applied to the whole cluster

var clusterbusStyle = new OpenLayers.Style({
    externalGraphic: "bus_stop.png",
    graphicWidth: "${iconSize}",
    graphicHeight: "${iconSize}",
    label: "${getName}",
    ...
}, {
    context: {
        iconSize: function (feature) {
            return 2 + feature.attributes.count*10;
        },
        getName: function (feature) {
            return feature.cluster[0].attributes.name;
        }
    }
});



  

Interacting with Vectors

Several controls are provided to select, edit and create 
vector features

The SelectFeature control is commonly used as a way to 
control pop-up creation

var selcontrol = new OpenLayers.Control.SelectFeature(
  bus,
  {
    onSelect: createPopup,
    onUnselect: destroyPopup
  }
);
map.addControl(selcontrol);
selcontrol.activate();

The SelectFeature control will also cause the feature to become 
rendered with the style 'select' from the Layer's StyleMap

var busStyleMap = new OpenLayers.StyleMap({
    'default': busStyle,
    'select': selbusStyle
});



  

Popups
Popups are seen by many as an essential part of webmapping, 
unfortunately, they're one of OL's weak points

The code used to produce the popups in the previous example:

function createPopup(feature) {
    feature.popup = new OpenLayers.Popup.FramedCloud("pop",
        feature.geometry.getBounds().getCenterLonLat(),
        null,
        '<div>name: '+feature.attributes.name+'</div>',
        null,
        true,
        function() { selcontrol.unselectAll(); }
    );
    map.addPopup(feature.popup);
}

The parameters passed to Popup.FramedCloud are:

An internal name for the popup
The LonLat position for the popup's tail
The size of the popup (null if to be automatically determined)
The contents of the popup
An anchor for the popup (optional)
If a close button is required
What the close button should do



  

Editing Vectors
Vector editing in OL has recently become very easy to use and configure, 
the EditingToolbar control handles the tedious control setup for you

First, the standard layer setup, but with the addition of the Save strategy 
that is set to automatically save changes:

var scribble = new OpenLayers.Layer.Vector("Scribble", {
    protocol: new OpenLayers.Protocol.HTTP({
        url: "/featureserver/featureserver.cgi/scribble",
        format: new OpenLayers.Format.GeoJSON()
    }),
    strategies: [
        new OpenLayers.Strategy.Fixed(),
        new OpenLayers.Strategy.Save({auto: true})
    ],
    projection: wgs
});

var toolbar = new OpenLayers.Control.EditingToolbar(scribble);
toolbar.addControls(new OpenLayers.Control.ModifyFeature(
    scribble, {displayClass: 'olControlModifyFeature'})
);
map.addControl(toolbar);

Then the edit toolbar control is created and the ModifyFeature control added 
to it, both are added to the map (3 DrawFeature controls are added automatically)



  

And Finally...

This workshop has been only a small overview of 
OpenLayers' core features, in addition to this it 
also supports more interaction with vector 
features such as filters and geometry 
intersections



  

Further Information

http://www.openlayers.org/

Demos
● Todays demos are at http://sn.im/soc-ol-demos 

along with all these links, this link will continue 
to work shortly after the conference

● Official at http://openlayers.org/dev/examples

Documentation
● http://docs.openlayers.org/

http://sn.im/soc-ol-demos
http://openlayers.org/dev/examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

